BigEdu.ru
» » » Интересные примеры в метрических пространствах
Вернуться назад

Интересные примеры в метрических пространствах

Интересные примеры

в метрических пространствах:

1. В n - мерном евклидовом пространстве полная ограниченность совпадает с обычной ограниченностью, то есть с возможностью заключить данное множество в достаточно большой куб. Действительно, если такой куб разбить на кубики с ребром e, то вершины этих кубиков будут образовывать конечную -сеть в исходном кубе, а значит, и подавно, в любом множестве, лежащем внутри этого куба.

1. Единичная сфера S в пространстве l 2 дает нам пример ограниченного, но не вполне ограниченного множества. Рассмотрим в S точки вида:

е 1 =(1, 0, 0, ..., 0, 0, ...),

е 2 =(0, 1, 0, ..., 0, 0, ...),

…………………………,

е n =(0, 0, 0, ..., 1, 0, ...),

………………………….

Расстояние между любыми двумя точками е n и е м (n ¹ m ) равно Ö2. Поэтому последовательность {е i } и любая ее подпоследовательность не сходятся. Отсюда в S не может быть конечной e-сети ни при каком e<Ö2/2.

2. Рассмотрим в l 2 множество П точек

x=(x1 , x2 , ¼, xn , ...),

удовлетворяющих условиям:

| x1 |£1, | x2 |£1/2, ¼,| xn |£1/2n -1 , ...

Это множество называется фундаментальным параллепипедом («гильбертовым кирпичем») пространства l 2 . Оно представляет собой пример бесконечномерного вполне ограниченного множества. Для доказательства его полной ограниченности поступим следующим образом.

Пусть e>0 задано. Выберем n так, что 1/2n-1 <e/2. Каждой точке x=(x1 , x2 , ¼, xn , ...)

из П сопоставим точку x*=(x1 , x2 , ¼, xn , 0, 0, ...)

из того же множества. При этом

r(x,x*)=£<1/2n -1 <e/2.

Множество П* точек вида x*=(x1 , x2 , ¼, xn , 0, 0, ...) из П вполне ограничено (как ограниченное множество в n -мерном пространстве). Выберем в П* конечную e/2-сеть. Она будет в то же время e-сетью во всем П . Докажем это.

Доказательство : для "e>0, выберем n так, что 1/2n -1 <e/2.

"xÎП : x=(x1 , x2 , ¼, xn , ...) сопоставим

x*=(x1 , x2 , ¼, xn , 0, 0, ...) и x*ÎП . При этом r(x,x*)<e/2. Из пространства П выберем x**: r(x*,x**)<e/2.

Тогда: r(x,x**)£r(x,x*)+r(x*,x**)<e/2+e/2=e.

Множество П* содержит точки вида x*=(x1 , x2 , ¼, xn , 0, 0, ...), в этом множестве выберем конечную e/2-сеть. Она будет e-сетью в пространстве П , так какr(x,x**)<e.

Внимание, отключите Adblock

Вы посетили наш сайт со включенным блокировщиком рекламы!
Ссылка для скачивания станет доступной сразу после отключения Adblock!

Скачать
Рефераты по математике Интересные примеры в метрических пространствах: 1. В n - мерном евклидовом пространстве полная ограниченность совпадает с обычной
Оценок: 1001 (Средняя 5 из 5)

Наверняка у вас есть товары или услуги, продажа которых приносит вам максимальную прибыль. Для быстрого старта в сети вам необходимо создание посадочной страницы (одностраничного сайта), на которой будет размещена информация о маржинальных товарах/услугах интернет магазина. За 8 лет опыта разработки конверсионных страниц мы выработали оптимальную структуру, которая позволит привлекать через landing page больше продаж. На такую структуру «одевается» ваш контент — фирменный стиль, тексты, фотографии, уникальные торговые предложения, после чего страница выходит в свет. Разработка лендинга и запуск в сети — до 7 рабочих дней. Стоит отметить, что в разработку самой посадочной страницы входит и написание копирайтером продающих текстов для вашего бизнеса, чтобы каждый посетитель страницы захотел совершить покупку именно у вас. Результат: качественно разработаная продающая посадочная страница, которая готова приносить вам новых клиентов.

© 2016 - 2022 BigEdu.ru