BigEdu.ru
» » » Нахождение площади живого сечения траншеи
Вернуться назад

Нахождение площади живого сечения траншеи

1. Формулировка проблемы.

Сечение траншеи имеет форму близкую к сегменту параболы, ширина траншеи на её поверхности l метров наибольшая глубина H метров . найти площадь «живого сечения» траншеи , если она полностью заполнена водой.

Дано:

l=1,5 Найти: S живого сечения траншеи

Н=2,25

2. Пояснение к решению.

· Прибавляя постоянную к первообразной какой-либо функции, вновь получают первообразную той же функции. Следовательно, имея одну первообразную F(x) функции f (x), получают общее выражение всех первообразных этой функции в виде F(x) + С. (Постоянная C называется произвольной постоянной). Это общее выражение первообразных называют неопределённым интегралом.

· Приращение первообразных функций F(x)+C при переходе аргумента x от значения x=a к значению x=b , равное разности F(b)-F(a) , называется определенным интегралом . Определённый интеграл - это число, в отличие от неопределённого интеграла, который является группой функций. Крайние точки области интегрирования называются границами интегрирования .Когда интеграл используется для вычисления площади, принято обозначать границы на двух концах знака интеграла и записывать так: .

· Функцию называют первообразной функции .

· -дифференциал функции и определяется следующим образом:

· Формула Ньютона-Лейбница. Если f(x) непрерывна на отрезке [a, b], и F(x) - некоторая первообразная функции , то

· Уравнение параболы имеет вид y=ax2 +bx+c.

· Определенный интеграл численно равен площади под графиком функции от которой он берется, причем площади на интервале интегрирования.

· нахождение неопределенного интеграла это операция обратная нахождению производной(дифференциированию).

4. Расчетная часть.

l=1,5 м

H=2,25 м

1)y=x2 +bx+c

2)y=ax2 +c

y=ax2 -2,25, т.к точка В с координатами (х=0,75;у=0) принадлежит параболе, то её координаты удовлетворяют уравнению параболы. =>

0=а◦0,752 -2,25; 0,752 ◦а=2,25; 0,5625◦а=2,25; а=2,25/0,5625; а=4

3)f(x)=4х2 -2,25

4) Найдем площадь «живого сечения»

Т.к части графика 1 и 2 идентичны, можно их представить как 2-е одинаковые части.

S=2◦2,4375=4,875 м2

Ответ: площадь «живого сечения» 4,875 м3

План:

1. Формулировка проблемы.

2. Пояснение к решению.

3. Графическая часть

4. Расчетная часть.

5. Выводы

6. Используемая литература.

Вывод

Выполнив работу я закрепила знания по теме определенный интеграл, его практическое применение и приложение в реальной жизни. С помощью исходных данных при заданных условиях научилась вычислять «живую площадь» траншеи.

6.Литература

Письменный Д.Т. - Конспект лекций по высшей математике. Интернет-ресурсы.

Внимание, отключите Adblock

Вы посетили наш сайт со включенным блокировщиком рекламы!
Ссылка для скачивания станет доступной сразу после отключения Adblock!

Скачать
Рефераты по математике 1. Формулировка проблемы. Сечение траншеи имеет форму близкую к сегменту параболы, ширина траншеи на её поверхности l метров наибольшая глубина H
Оценок: 1000 (Средняя 5 из 5)

Наверняка у вас есть товары или услуги, продажа которых приносит вам максимальную прибыль. Для быстрого старта в сети вам необходимо создание посадочной страницы (одностраничного сайта), на которой будет размещена информация о маржинальных товарах/услугах интернет магазина. За 8 лет опыта разработки конверсионных страниц мы выработали оптимальную структуру, которая позволит привлекать через landing page больше продаж. На такую структуру «одевается» ваш контент — фирменный стиль, тексты, фотографии, уникальные торговые предложения, после чего страница выходит в свет. Разработка лендинга и запуск в сети — до 7 рабочих дней. Стоит отметить, что в разработку самой посадочной страницы входит и написание копирайтером продающих текстов для вашего бизнеса, чтобы каждый посетитель страницы захотел совершить покупку именно у вас. Результат: качественно разработаная продающая посадочная страница, которая готова приносить вам новых клиентов.

© 2016 - 2022 BigEdu.ru