BigEdu.ru

СМО с отказами

СМО с отказами (задача Эрланга)

Рассматривается N-канальная СМО с отказами:

λпотерь

λобслуживания

υ

υ

υ

λ

ОА1

ОА2

ОАn

G

Любая заявка может быть обслужена любым свободным каналом. Если все каналы заняты, заявка немедленно получает отказ в обслуживании и покидает систему (теряется). Интенсивности входных и выходных потоков:

Считаем, что в этой системе имеются следующие потоки событий:

1) поступление заявок на вход СМО из источника заявок G;

2) обслуживание заявок в каналах.

Будем считать, что первый и второй потоки событий являются простейшими потоками с экспоненциальными законами распределения. Интервал поступления и обслуживания заявок соответственно имеют следующие характеристики:

1) интенсивность потока поступающих заявок характеризуется λ

2) интенсивность обслуживания одним каналом:

- мат.ожидание длительности обслуживания

Т.о. входной поток с интенсивностью λ и поток обслуживания с интенсивностью µ распределены по экспоненциальному закону и следовательно данные потоки являются простейшими, а сами процессы в системе Марковскими. Представим граф схему переходов для этого случая:

Состояния СМО в данном случае нумеруются по числу заявок, находящихся в СМО (в силу отсутствия очереди состояния, в котором находится система, совпадает с числом занятых каналов)

S0 - все каналы свободны, система свободна

S1 - занят один канал

Sk - заняты k каналов, остальные (n-k) свободны

Sn - заняты все n каналов

µ

(n-1)µ

λ

λ

λ

λ

λ

λ

S0

S1

S2

Sk

Sn-1

Sn

Из состояния Si-1 всегда с интенсивностью входного потока λ система переходит в следующее состояние Si, т.е. в данном случае будет заняе еще один канал и интенсивность перехода в следующее состояние равно интенсивности входного потока λ. Интенсивность обратного перехода возрастает с ростом числа параллельно работающих каналов. Чем больше их работает, тем интенсивнее процесс их освобождения. Для простейших потоков имеем:

Данная схема называется схемой гибели и размножения. Такое название происходит от того, что связаны соседние состояния. Математический аппарат - это Марковский процесс, с дискретными состояниями и непрерывным временем. Для заданной СМО матрица интенсивностей Λ имеет вид:

Пользуясь матрицей Λ запишем уравнения, которые позволяют рассчитать вероятности пребывания системы в каждом из указанных состояний. Распределение вероятностей P0,P1,…,Pn по состояниям S0,…,Sn определяется как решение системы дифференциальных уравнений.

P’(t)=P(t)Λ с начальными условиями:

P0(0)=1

Pi(0)=0, i=1,n;

Эти уравнения называются уравнениями Эрланга. Вероятности Рi характеризуют среднюю загрузку системы, в частности, Pn - это вероятность получения отказа в обслуживании, т.е. вероятность того, что все каналы заняты и все поступающие заявки будут потеряны. Тогда q=1-Pn - это вероятность обслуживания.

Зная эти вероятности, можно рассчитать различные характеристики эффективности системы.

А - среднее число заявок, обслуживаемых СМО в единицу времени или абсолютная пропускная способность СМО

Q - относительная пропускная способность СМО или вероятность обслуживания поступившей заявки

Внимание, отключите Adblock

Вы посетили наш сайт со включенным блокировщиком рекламы!
Ссылка для скачивания станет доступной сразу после отключения Adblock!

Скачать
Рефераты по математике СМО с отказами (задача Эрланга) Рассматривается N-канальная СМО с отказами: λпотерь λобслуживания υ υ υ
Оценок: 1000 (Средняя 5 из 5)

Наверняка у вас есть товары или услуги, продажа которых приносит вам максимальную прибыль. Для быстрого старта в сети вам необходимо создание посадочной страницы (одностраничного сайта), на которой будет размещена информация о маржинальных товарах/услугах интернет магазина. За 8 лет опыта разработки конверсионных страниц мы выработали оптимальную структуру, которая позволит привлекать через landing page больше продаж. На такую структуру «одевается» ваш контент — фирменный стиль, тексты, фотографии, уникальные торговые предложения, после чего страница выходит в свет. Разработка лендинга и запуск в сети — до 7 рабочих дней. Стоит отметить, что в разработку самой посадочной страницы входит и написание копирайтером продающих текстов для вашего бизнеса, чтобы каждый посетитель страницы захотел совершить покупку именно у вас. Результат: качественно разработаная продающая посадочная страница, которая готова приносить вам новых клиентов.

© 2016 - 2022 BigEdu.ru